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Nonlinear Wave Mechanics, Information Theory, 
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A logarithmic nonlinear term is introduced in the Schr6dinger wave equation, 
and a physical justification and interpretation are provided within the context 
of information theory and thermodynamics. From the resulting nonlinear 
SchrSdinger equation for a system at absolute temperature T> 0, the energy 
equivalence, kT  In 2, of a bit of information is derived. 

1. INTRODUCTION 

The Lagrangian formulation of quantum field theory and the Hamil- 
tonian formulation of  quantum mechanics in general use today are both 
largely phenomenological descriptions of  the dynamics of  particles and 
fields. Interactions are represented by adding the corresponding terms to 
the Lagrangian or Hamiltonian operator, as appropriate. In the Hamiltonian 
of  the Schr6dinger wave equation, these are generally independent of  the 
wave function; thus, the familiar linear Schr6dinger equation of nonrelativis- 
tic quantum mechanics. However, various model potentials used in the 
Schr6dinger equation, such as the Thomas-Fermi approximation (Slater, 
1968), Hartree-type potentials (Efinger, 1973, 1984), and certain hydro- 
dynamic analogies (Gridnev et al., 1983), lead to nonlinear wave equations. 

Nonlinear generalizations (Weinberg, 1989a) and extensions 
(Bialynicki-Birula and Mycielski, 1975a, b, 1976; Delion et  al., 1978; Efinger, 
1984; Hefter, 1985a) of nonrelativistic quantum mechanics and relativistic 
quantum field theory (Kibble, 1978; Morris, 1978; Ventura and Marques, 
1978) have been proffered. Several forms of  nonlinearity have been 
examined in these extensions and a thorough study of the logarithmic 
nonlinearity in particular has been made by Bialynicki-Birula and Mycielski 

1Teledyne Brown Engineering, Optical Systems Department, Cummings Research Park, 
Huntsville, Alabama 35807-7007. 

979 
0020-7748/91/0700-0979506.50/0 �9 1991 Plenum Publishing Corporation 



980 Brasher 

(1975b, 1976). In this paper, it is demonstrated that such a term can be 
ascribed a physical significance. Its introduction into the Schr6dinger wave 
equation is thus justified on physical grounds and it arises quite naturally, 
not merely as an ad hoc mathematical facility. It is interpreted within the 
context of information theory and thermodynamics. As a consequence, the 
energy equivalence of a bit of information is derived. 

2. T H E O R Y  

Imagine a subsystem of N particles, which is part of, and in contact 
with, a large closed system at a fixed temperature, T > 0. A good example 
is a computer in its operating environment. It is assumed that information 
and energy may be exchanged between the subsystem and its surroundings, 
e.g., by thermal contact or other means. 

The time-independent Schr6dinger equation for the subsystem in a 
quantum state IV), whose coordinate representation is the wavefunction 
and whose energy eigenvalue is Eo, is 

nol~/') -- Eo Iq'> (1) 

in which the Hamiltonian operator Ho has the coordinate representation 

Ho = - {  ~ V ~ + U  (2) 
j = l  ~,,,j 

in atomic units. It consists of the usual kinetic energy operator (for particles 
of masses ms) and a potential function U. One includes in this as many 
terms as are required to account for all the interactions between the particles 
and fields comprising the subsystem. Such terms are generally wavefunction- 
independent, resulting in a linear Schr6dinger equation. 

However, the interactions do depend on the distribution of particles 
in configuration space. This distribution, described by I~l 2, contains infor- 
mation and, consequently, requires the expenditure or, at least, the transfer 
of energy to be established. Thus, there is some potential energy stored as 
information in IV) or in the measurement of [~). The probability density 
of a given configuration is proportional, within a normalization factor, to 
I 12 The information (Shannon and Weaver, 1949) I acquired upon 
measurement of the state IV) is proportional to the logarithm of the prob- 
ability that a measurement results in the outcome [~), or 

I = - l o g 2 ( a l ~ l  2) bits (3) 

The parameter a > 0 can be tentatively regarded as a normalization factor, 
though it will subsequently become apparent that it has a physical sig- 
nificance, Suppose that the measurement of the state IV) produces I bits 
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of information according to equation (3) and that an amount e of energy 
per bit is expended, transferred, stored, or otherwise associated with this 
information or with the particular organization of the matter in which the 
information is encoded. Then, accordingly, there should be an additional 
term el added to the Hamiltonian in equation (2). Thus, 

H=no+eI=-j=l ~ ~mj v~+ U-E l~ (4) 

is the system Hamiltonian, which now includes the potential energy el 
associated with the information encoded or stored in the distribution of 
matter described by the probability density 1~[2. 

Indeed, energy is the medium of generation, transport, and storage of 
information. Energy is required to measure, arrange, and maintain any 
distribution of matter that encodes information. Equation (4) is a reflection 
of this fact, which is the physical origin of the logarithmic nonlinearity in 
the Schr/Sdinger equation. 

The expectation value of the Hamiltonian of equation (4) in the state 
]~), normalized so that ( ~ 1 ~ ) =  1, is the total energy 

-- -- <'I'lHol > + 

= E0-  e(~] log2(al~[2)[~) (5) 

Of course, taking the expectation value includes the appropriate statistical 
ensemble averaging. Let us define the entropy S, associated with the sub- 
system by 

S = - k ( ~  I ln(al~l=)l~) (6) 

the expectation value of the information (Shannon and Weaver, 1949), 

I = - l n ( a [ ~ l  2) nats (7) 

expressed in natural units. The factor k is the Boltzmann constant and 
converts the units of entropy to the familiar thermodynamic units. Peres 
(1989) and Weinberg (1989b) have discussed alternative definitions of 
entropy in quantum systems. From equations (5) and (6), it follows that 

8 

= + k--i- n 2 S (8) 

Equation (8) involves the entropy S expressed in terms of the elementary 
entropy change k In 2, accompanying the measurement of a bit of informa- 
tion (Landauer, 1961). 
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Now, let us reconsider the parameter a introduced in equation (3). 
From equation (6), it is apparent that 

S = - k ( ~ [  ln[~lz[~)-  k(~[ In a l~)  (9) 

Thus, the significance of a is that it establishes a reference for the measure- 
ment of the entropy. For continuous systems, the entropy is measured 
relative to a given coordinate system or configuration. There is no absolute 
entropy as in discrete systems (Shannon and Weaver, 1949). One could, for 
instance, establish the reference entropy as that for a uniform distribution, 
I'I'o[ 2. Thus,  

So = -k (q ' l  ln(alq'ol~)[~) = o (1o) 

yields 

and 

a:l~o1-2 (11) 

s = -k(~I'l lnl'tq'I%12['~> (12) 

Equation (6), (9), or (12) gives the entropy associated with the information 
contained in I ~ )  relative to that in I~o). If  the subsystem has fixed volume 
f~, and the states are box-normalized over lI, then a--I~o1-2= f~ sets the 
scale of the coordinate system, and thus fixes the reference entropy. 

The temperature T of the subsystem is defined (Landau and Lifshitz, 
1977) as 

T = ( O E / O S ) a  (13) 

Equations (8) and (13) give 

or  

T = s  (14) 

= k T  In 2 (15) 

This gives the parameter e a direct physical interpretation as the energy 
per bit associated with the information acquired in the measurement of the 
state I~) or, equivalently, of the information stored in I~F). Equation (15) 
is a familiar result, although it was originally derived in a different context 
(Landauer, 1961) and has been the subject of much discussion (Bennett, 
1982; Porod et al., 1984). 2 

From equations (8) and (14), we obtain the free energy 

Eo = E - T S  (16) 

2See also the comments and replies thereto in Physical Review Letters, 53, 1202, 1203, 1204, 
1205, 1206 (1984) and references therein. 
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available to do work (compute, measure, rearrange matter, maintain a given 
configuration, etc.), and the energy TS  bound up in information is unavail- 
able for this purpose. 

The Hamiltonian in equation (4) is appropriate for a subsystem in 
which information is being exchanged with its environment. In other words, 
information is not being conserved. This is precisely analogous to a system 
having a variable number of particles, which is accommodated by adding 
the term - / x N  to the Hamiltonian Ho, resulting in 

H = n o -  l z N  (17) 

The chemical potential /x measures the rate of change of the energy as the 
particle number N varies. In the case at hand, the (number of  bits of) 
information is variable, so the Hamiltonian (4), 

H = H o + e I  

contains a parameter e, which measures the variation of the energy E with 
respect to information I as the number of bits varies. 

3. SUMMARY AND CONCLUDING REMARKS 

A physical foundation for the Schr~dinger wave equation with logarith- 
mic nonlinearity was provided, and a direct physical significance was 
attributed to it. Moreover, the connection between the entropies of  thermo- 
dynamics and of  information theory has been made in a precise way. Using 
the thermodynamic definition of temperature, the energy equivalence of a 
bit of  information was derived. The concept of  free energy, with a precise 
description of  exactly how and where the unavailable energy of a system 
is bound up, was recovered. 

It is an interesting observation that the nonlinear term in the 
Schr6dinger equation can be so naturally associated with the nonlinear 
process of measurement. The fact that the Hamiltonian H governing the 
dynamics of  the state I~) depends itself on [~), through the nonlinear term 
associated with its measurement, is reminiscent of the inextricable admixture 
of state and observer. 

Various experiments to test the linearity of  quantum mechanics in 
atomic and nuclear systems have been performed (Bollinger et al., 1989; 
Chupp and Hoare, 1990; Walsworth et al., 1990). In particular, searches 
for a logarithmic nonlinearity of the form examined in this paper have been 
made (Shimony, 1979; Shull et al., 1980; Gaehler  et al., 1981; Hefter, 1985b). 
All of  these studies have indicated that any nonlinearity in the Schr~idinger 
equation must be of extremely small magnitude. However, they have all 
dealt with microscopic (atomic, nuclear, free-neutron) systems, for which 
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t e m p e r a t u r e  is a n  i l l -de f ined  concep t .  The  n o n l i n e a r  t e rm  s t u d i e d  in  this  
p a p e r  was  s h o w n  to be  d i rec t ly  re la ted  to a sys tem t e m p e r a t u r e ,  sugges t ing  

tha t  the  n o n l i n e a r i t y  m i g h t  be  r e l evan t  in  m a n y - p a r t i c l e  sys tems,  such  as 
m a c r o -  or  m e s o s c o p i c  mat te r .  

A C K N O W L E D G M E N T  

This  w o r k  was  s u p p o r t e d  b y  I n d e p e n d e n t  R e s e a r c h  a n d  D e v e l o p m e n t  
F u n d s  p r o v i d e d  b y  T e l e d y n e  B r o w n  E n g i n e e r i n g .  
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